skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Jianfu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of “design for control“, namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons. 
    more » « less
  2. This paper presents a portable inertial measurement unit (IMU)-based motion sensing system and proposed an adaptive gait phase detection approach for non-steady state walking and multiple activities (walking, running, stair ascent, stair descent, squat) monitoring. The algorithm aims to overcome the limitation of existing gait detection methods that are time-domain thresholding based for steady-state motion and are not versatile to detect gait during different activities or different gait patterns of the same activity. The portable sensing suit is composed of three IMU sensors (wearable sensors for gait phase detection) and two footswitches (ground truth measurement and not needed for gait detection of the proposed algorithm). The acceleration, angular velocity, Euler angle, resultant acceleration, and resultant angular velocity from three IMUs are used as the input training data and the data of two footswitches used as the training label data (single support, double support, swing phase). Three methods 1) Logistic Regression (LR), 2) Random Forest Classifier (RF), and 3) Artificial Neural Network (NN) are used to build the gait phase detection models. The result shows our proposed gait phase detection with Random Forest Classifier can achieve 98.94% accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 99.00% in stair-descent, and 99.63% in squatting. It demonstrates that our sensing suit can not only detect the gait status in any transient state but also generalize to multiple activities. Therefore, it can be implemented in real-time monitoring of human gait and control of assistive devices. 
    more » « less